Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:
медицина
альтернирующий пульс
математика
альтернирующий тензор
В теории узлов диаграмма узла или зацепления является альтернированной, если пересечения чередуются — под, над, под, над, и т.д., если идти вдоль каждой компоненты зацепления. Зацепление является альтернированным, если оно имеет альтернированную диаграмму.
Многие из узлов с числом пересечений, меньшим 10, являются альтернированными. Этот факт и полезные свойства альтернированных узлов, такие как гипотезы Тэйта, позволили некоторым исследователям, включая Тэйта, составить таблицы с относительно малым числом ошибок или упущений. Простейшие неальтернированные простые узлы имеют 8 пересечений (и имеется три таких узла — 819, 820, 821).
Существует гипотеза, что по мере возрастания числа пересечений процент неальтернированных узлов стремится к 0 экспоненциально быстро.
Альтернированные зацепления имеют важную роль в теории узлов и теории трёхмерных многообразий вследствие того, что их дополнения имеют полезные и интересные геометрические и топологические свойства. И это позволило Ральфу Фоксу поставить вопрос: «Что есть альтернированный узел?» . Тем самым он спрашивает, какие свойства дополнения узла, не связанные с диаграммами, могут характеризовать альтернированные узлы.
В ноябре 2015 Джошуа Эван Грин опубликовал препринт, в котором устанавливается характеризация альтернированных зацеплений в терминах определения стягивающих поверхностей, т.е. определения альтернированных зацеплений (среди которых альтернированные узлы являются специальным случаем) без использования концепции диаграмм зацеплений.
Различная геометрическая и топологическая информация открывается в альтернированных диаграммах. Простоту и разводимость зацепления легко видеть на диаграмме. Число пересечений приведённой альтернированной диаграммы является числом пересечений узла, и это одна из знаменитых гипотез Тэйта.
Альтернированная диаграмма узла находится в соответствии один-к-одному с планарным графом. Каждое пересечение связывается с ребром и половина связных компонент дополнения диаграммы связаны с вершинами.